Showing posts with label minerals. Show all posts
Showing posts with label minerals. Show all posts

Saturday, December 11, 2010

Dr. Mellanby's Tooth Decay Reversal Diet

I have a lot of admiration for Drs. Edward and May Mellanby. A husband-and-wife team, they discovered vitamin D, and determined that rickets is caused by poor calcium (or phosphorus) status, typically due to vitamin D deficiency. They believed that an ideal diet is omnivorous, based on whole foods, and offers an adequate supply of fat-soluble vitamins and easily absorbed minerals. They also felt that grain intake should be modest, as their research showed that unsoaked whole grains antagonize the effect of vitamins D and A.

Not only did the Mellanbys discover vitamin D and end the rickets epidemic that was devastating Western cities at the time, they also discovered a cure for early-stage tooth decay that has been gathering dust in medical libraries throughout the world since 1924.

It was in that year that Dr. May Mellanby published a summary of the results of the Mellanby tooth decay reversal studies in the British Medical Journal, titled "Remarks on the Influence of a Cereal-free Diet Rich in Vitamin D and Calcium on Dental Caries in Children". Last year, I had to specially request this article from the basement of the University of Washington medical library (1). Thanks to the magic of the internet, the full version of the paper is now freely available online (2).

You don't need my help to read the study, but in this post I offer a little background, a summary and my interpretation.

In previous studies, the Mellanbys used dogs to define the dietary factors that influence tooth development and repair. They identified three, which together made the difference between excellent and poor dental health (from Nutrition and Disease):
  1. The diet's mineral content, particularly calcium and phosphorus
  2. The diet's fat-soluble vitamin content, chiefly vitamin D
  3. The diet's content of inhibitors of mineral absorption, primarily phytic acid
Once they had defined these factors, they set about testing their hypotheses in humans. They performed eight trials, each one in children in an institutionalized setting where diet could be completely controlled. The number of cavities in each child's mouth was noted at the beginning and end of the period. I'll only discuss the three most informative, and only the most successful in detail. First, the results:

I'll start with diet 1. Children on this diet ate the typical fare, plus extra oatmeal. Oatmeal is typically eaten as an unsoaked whole grain (and soaking it isn't very effective in any case), and so it is high in phytic acid, which effectively inhibits the absorption of a number of minerals including calcium. These children formed 5.8 cavities each and healed virtually none-- not good!

Diet number 2 was similar to diet 1, except there was no extra oatmeal and the children received a large supplemental dose of vitamin D. Over 28 weeks, only 1 cavity per child developed or worsened, while 3.9 healed. Thus, simply adding vitamin D to a reasonable diet allowed most of their cavities to heal.

Diet number 3 was the most effective. This was a grain-free diet plus supplemental vitamin D. Over 26 weeks, children in this group saw an average of only 0.4 cavities form or worsen, while 4.7 healed. The Mellanbys considered that they had essentially found a cure for this disorder in its early stages.

What exactly was this diet? Here's how it was described in the paper (note: cereals = grains):
...instead of cereals- for example, bread, oatmeal, rice, and tapioca- an increased allowance of potatoes and other vegetables, milk, fat, meat, and eggs was given. The total sugar, jam, and syrup intake was the same as before. Vitamin D was present in abundance in either cod-liver oil or irradiated ergosterol, and in egg yolk, butter, milk, etc. The diet of these children was thus rich in those factors, especially vitamin D and calcium, which experimental evidence has shown to assist calcification, and was devoid of those factors- namely, cereals- which interfere with the process.
Carbohydrate intake was reduced by almost half. Bread and oatmeal were replaced by potatoes, milk, meat, fish, eggs, butter and vegetables. The diet is reminiscent of what Dr. Weston Price used to reverse tooth decay in his dental clinic in Cleveland, although Price's diet did include rolls made from freshly ground whole wheat. Price also identified the fat-soluble vitamin K2 MK-4 as another important factor in tooth decay reversal, which would have been abundant in Mellanby's studies due to the dairy. The Mellanbys and Price were contemporaries and had parallel and complementary findings. The Mellanbys did not understand the role of vitamin K2 in mineral metabolism, and Price did not seem to appreciate the role of phytic acid from unsoaked whole grains in preventing mineral absorption.

Here are two sample meals provided in Dr. Mellanby's paper. I believe the word "dinner" refers to the noon meal, and "supper" refers to the evening meal:
Breakfast- Omelette, cocoa, with milk.
Lunch- Milk.
Dinner- Potatoes, steamed minced meat, carrots, stewed fruit, milk.
Tea- Fresh fruit salad, cocoa made with milk.
Supper- Fish and potatoes fried in dripping, milk.

Breakfast- Scrambled egg, milk, fresh salad.
Dinner- Irish stew, potatoes, cabbage, stewed fruit, milk.
Tea- Minced meat warmed with bovril, green salad, milk.
Supper- Thick potato soup made with milk.
In addition, children received vitamin D daily. Here's Dr. Mellanby's summary of their findings:
The tests do not indicate that in order to prevent dental caries children must live on a cereal-free diet, but in association with the results of the other investigations on animals and children they do indicate that the amount of cereal eaten should be reduced, particularly during infancy and in the earlier years of life, and should be replaced by an increased consumption of milk, eggs, butter, potatoes, and other vegetables. They also indicate that a sufficiency of vitamin D and calcium should be given from birth, and before birth, by supplying a suitable diet to the pregnant mother. The teeth of the children would be well formed and more resistant to dental caries instead of being hypoplastic and badly calcified, as were those in this investigation.
If I could add something to this program, I would recommend daily tooth brushing and flossing, avoiding sugar, and rinsing the mouth with water after each meal.

This diet is capable of reversing early stage tooth decay. It will not reverse advanced decay, which requires professional dental treatment as soon as possible. It is not a substitute for dental care in general, and if you try using diet to reverse your own tooth decay, please do it under the supervision of a dentist. And while you're there, tell her about Edward and May Mellanby!

Preventing Tooth Decay
Reversing Tooth Decay
Images of Tooth Decay Healing due to an Improved Diet
Dental Anecdotes

Tuesday, July 20, 2010

Real Food XI: Sourdough Buckwheat Crepes

Buckwheat was domesticated in Southeast Asia roughly 6,000 years ago. Due to its unusual tolerance of cool growing conditions, poor soils and high altitudes, it spread throughout the Northern latitudes of Eurasia, becoming the staple crop in many regions. It's used to a lesser extent in countries closer to the equator. It was also a staple in the Northeastern US until it was supplanted by wheat and corn.

Buckwheat isn't a grain: it's a 'pseudograin' that comes from a broad-leaved plant. As such, it's not related to wheat and contains no allergenic gluten. Like quinoa, it has some unusual properties that make it a particularly nutritious food. It's about 16 percent protein by calories, ranking it among the highest protein grains. However, it has an advantage over grains: it contains complete protein, meaning it has a balance of essential amino acids similar to animal foods. Buckwheat is also an exceptional source of magnesium and copper, two important nutrients that may influence the risk of insulin resistance and cardiovascular disease (1, 2).

However, like all seeds (including grains and nuts), buckwheat is rich in phytic acid. Phyic acid complexes with certain minerals, preventing their absorption by the human digestive tract. This is one of the reasons why traditional cultures prepare their grains carefully (3). During soaking, and particularly fermentation of raw batters, an enzyme called phytase goes to work breaking down the phytic acid. Not all seeds are endowed with enough phytase to break down phytic acid in a short period of time. Buckwheat contains a lot of phytase, and consequently fermented buckwheat batters contain very little phytic acid (4, 5). It's also high in astringent tannins, but thorough soaking in a large volume of water removes them.

Buckwheat is fermented in a number of traditional cultures. In Bhutan, it's fermented to make flatbreads and alcoholic drinks (6). In Brittany (Bretagne; Northwestern France), sourdough buckwheat flour pancakes are traditional. Originally a poverty food, it is now considered a delicacy.

The following simple recipe is based on my own experimentation with buckwheat. It isn't traditional as far as I know, however it is based on traditional methods used to produce sourdough flatbreads in a number of cultures. I used the word 'crepe' to describe it, but I typically make something more akin to a savory pancake or uttapam. You can use it to make crepes if you wish, but this recipe is not for traditional French buckwheat crepes.

It's important that the buckwheat be raw and whole for this recipe. Raw buckwheat is light green to light brown (as in the photo above). Kasha is toasted buckwheat, and will not substitute properly. It's also important that the water be dechlorinated and the salt non-iodized, as both will interfere with fermentation.

For a fermentation starter, you can use leftover batter from a previous batch (although it doesn't keep very long), or rice soaking water from this method (7).

Ingredients and Materials


  • 2-3 cups raw buckwheat groats
  • Dechlorinated water (filtered, boiled, or rested uncovered overnight)
  • Non-iodized salt (sea salt, pickling salt or kosher salt), 2/3 tsp per cup of buckwheat
  • Fermentation starter (optional), 2 tablespoons
  • Food processor or blender
Recipe
  1. Cover buckwheat with a large amount of dechlorinated water and soak for 9-24 hours. Raw buckwheat is astringent due to water-soluble tannins. Soaking in a large volume of water and giving it a stir from time to time will minimize this. The soaking water will also get slimy. This is normal.
  2. Pour off the soaking water and rinse the buckwheat thoroughly to get rid of the slime and residual tannins.
  3. Blend the buckwheat, salt, dechlorinated water and fermentation starter in a food processor or blender. Add enough water so that it reaches the consistency of pancake batter. The smoother you get the batter, the better the final product will be.
  4. Ferment for about 12 hours, a bit longer or shorter depending on the temperature and whether or not you used a starter. The batter may rise a little bit as the microorganisms get to work. The smell will mellow out. Refrigerate it after fermentation.
  5. In a greased or non-stick skillet, cook the batter at whatever thickness and temperature you prefer. I like to cook a thick 'pancake' with the lid on, at very low heat, so that it steams gently.
Dig in! Its mild flavor goes with almost anything. Batter will keep for about four days in the fridge.

Thanks to Christaface for the CC licensed photo (Flickr).

Wednesday, June 16, 2010

Low Micronutrient Intake may Contribute to Obesity

Lower Micronutrient Status in the Obese

Investigators have noted repeatedly that obese people have a lower blood concentration of a number of nutrients, including vitamin A, vitamin D, vitamin K, several B vitamins, zinc and iron (1). Although there is evidence that some of these may influence fat mass in animals, the evidence for a cause-and-effect relationship in humans is generally slim. There is quite a bit of indirect evidence that vitamin D status influences the risk of obesity (2), although a large, well-controlled study found that high-dose vitamin D3 supplementation does not cause fat loss in overweight and obese volunteers over the course of a year (3). It may still have a preventive effect, or require a longer timescale, but that remains to be determined.

Hot off the Presses

A new study in the journal Obesity, by Y. Li and colleagues, showed that compared to a placebo, a low-dose multivitamin caused obese volunteers to lose 7 lb (3.2 kg) of fat mass in 6 months, mostly from the abdominal region (4). The supplement also reduced LDL by 27%, increased HDL by a whopping 40% and increased resting energy expenditure. Here's what the supplement contained:

Vitamin A(containing natural mixed b-carotene) 5000 IU
Vitamin D 400 IU
Vitamin E 30 IU
Thiamin 1.5 mg
Riboflavin 1.7 mg
Vitamin B6 2 mg
Vitamin C 60 mg
Vitamin B12 6 mcg
Vitamin K1 25 mcg
Biotin 30 mcg
Folic acid 400 mcg
Nicotinamide 20 mg
Pantothenic acid 10 mg
Calcium 162 mg
Phosphorus 125 mg
Chlorine 36.3 mg
Magnesium 100 mg
Iron 18 mg
Copper 2 mg
Zinc 15 mg
Manganese 2.5 mg
Iodine 150 mcg
Chromium 25 mcg
Molybdenum 25 mcg
Selenium 25 mcg
Nickel 5 mcg
Stannum 10 mcg
Silicon 10 mcg
Vanadium 10 mcg

Although the result needs to be repeated, if we take it at face value, it has some important implications:
  • The nutrient density of a diet may influence obesity risk, as I speculated in my recent audio interview and related posts (5, 6, 7, 8, 9).
  • Many nutrients act together to create health, and multiple insufficiencies may contribute to disease. This may be why single nutrient supplementation trials usually don't find much.
  • Another possibility is that obesity can result from a number of different nutrient insufficiencies, and the cause is different in different people. This study may have seen a large effect because it corrected many different insufficiencies.
  • This result, once again, kills the simplistic notion that body fat is determined exclusively by voluntary food consumption and exercise behaviors (sometimes called the "calories in, calories out" idea, or "gluttony and sloth"). In this case, a multivitamin was able to increase resting energy expenditure and cause fat loss without any voluntary changes in food intake or exercise, suggesting metabolic effects and a possible downward shift of the body fat "setpoint" due to improved nutrient status.
Practical Implications

Does this mean we should all take multivitamins to stay or become thin? No. There is no multivitamin that can match the completeness and balance of a nutrient-dense, whole food, omnivorous diet. Beef liver, leafy greens and sunlight are nature's vitamin pills. Avoiding refined foods instantly doubles the micronutrient content of the typical diet. Properly preparing whole grains by soaking and fermentation is equivalent to taking a multi-mineral along with conventionally prepared grains, as absorption of key minerals is increased by 50-300% (10). Or you can eat root vegetables instead of grains, and enjoy their naturally high mineral availability. Or both.